Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zu-Pei Liang* and Jian Li

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail:
zupeiliang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.140$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-Hydroxyphenyl)isoindoline-1,3-dione

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{3}$, the dihedral angle between the phthalimide ring system and the hydroxybenzene ring is $64.77(5)^{\circ} . \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into zigzag chains along the b axis.

Comment

Phthalimides and N-substituted phthalimides are an important class of compounds because of their interesting biological activities (Lima et al., 2002; Orzeszka et al., 2000; Bailleux et al., 1993). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997). In this paper, the structure of the title compound, (I), is reported.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The phthalimide moiety is essentially planar, with a mean deviation of 0.015 (2) \AA. Considering the different substitution patterns, the geometry of the phthalimide ring system compares favourably with that in the related compounds 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde (Liu et al., 2004) and 5-amino-2-methylisoindoline-1,3-dione (Liang et al., 2006). The hydroxybenzene ring (atoms C9-C14) is planar to within 0.009 (2) A. The dihedral angle between the N1/O1/O2/C1-C8 and C9-C14 planes is $64.77(5)^{\circ}$.

Symmetry-related molecules are linked via $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{i}$ hydrogen bonds (the symmetry code is given in Table 1), forming a zigzag chain along the b axis. In addition, the molecular packing is stabilized by $\pi-\pi$ interactions between the

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
phthalimide ring systems of the molecules at (x, y, z) and ($1-x,-y, 1-z$); their centroids are separated by 3.519 (2) Å.

Experimental

A solution of phthalimide (0.1 mol), 4-aminophenol (0.1 mol) and triethylamine (0.01 ml) in xylene (100 ml) was refluxed for 3 h . After cooling, filtration and drying, the title compound was obtained. 10 mg of (I) was dissolved in 15 ml acetone, the solution was allowed to evaporate at room temperature and colourless single crystals formed after 10 d .

Crystal data

$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{3} \\ & M_{r}=239.22 \\ & \text { Orthorhombic, } \mathrm{Pbc} \\ & a=11.524 \text { (3) } \AA \\ & b=7.7133(19) \AA \end{aligned}$

$Z=8$

$D_{x}=1.436 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.32 \times 0.22 \times 0.14 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	11576 measured reflections
\quad diffractometer	2265 independent reflections
φ and ω scans	1300 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.073$
$\quad(S A D A B S ;$ Bruker, 1997)	$\theta_{\max }=26.4^{\circ}$
$T_{\min }=0.968, T_{\max }=0.986$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.140$
$S=0.92$
2265 reflections
165 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.95	$2.723(2)$	156
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.				

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and refined in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (carrier) for methyl H atoms and $1.2 U_{\text {eq }}$ (carrier) for all other H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bailleux, V., Vallce, L., Nuyts, J. P. \& Vamecq, J. (1993). Biomed. Pharmacother. 47, 4634-4637.
Bruker (1997). SADABS, SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Couture, A., Deniau, E., Grandclaudon, P. \& Hoarau, C. (1998). J. Org. Chem. 63, 3128-132.
Couture, A., Deniau, E., Woisel, P. \& Grandclaudon, P. (1997). Synthesis, 63, 1469-1445.
Liang, Z.-P. \& Li, J. (2006). Acta Cryst. E62, o4126-o4127.
Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. \& Barreiro, E. (2002). J. Biol. Org. Med. Chem. 10, 30673073.

Liu, X.-G., Feng, Y.-Q., Wu, P., Chen, X. \& Li, F. (2004). Acta Cryst. E60, o2293-o2294.
Orzeszka, A., Kaminsaka, B., Orzesko, G. \& Stareerciak, J. (2000). Il Farmaco, 55, 619-623.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

